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Abstract

Biodiversity-ecosystem functioning experiments have established that species richness and compo-
sition are both important determinants of ecosystem function in an experimental context. Deter-
mining whether this result holds for real-world ecosystem services has remained elusive, however,
largely due to the lack of analytical methods appropriate for large-scale, associational data. Here,
we use a novel analytical approach, the Price equation, to partition the contribution to ecosystem
services made by species richness, composition and abundance in four large-scale data sets on
crop pollination by native bees. We found that abundance fluctuations of dominant species drove
ecosystem service delivery, whereas richness changes were relatively unimportant because they pri-
marily involved rare species that contributed little to function. Thus, the mechanism behind our
results was the skewed species-abundance distribution. Our finding that a few common species,
not species richness, drive ecosystem service delivery could have broad generality given the
ubiquity of skewed species-abundance distributions in nature.
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INTRODUCTION

Several decades of biodiversity-ecosystem functioning research
has shown that in experimental settings, biodiversity loss
strongly reduces ecosystem functioning (Cardinale et al. 2012;
Tilman et al. 2012). Across hundreds of experiments, the loss
of species richness, as well as the loss of particular species
(termed species composition or identity effects), both have
strong effects on function (Cardinale et al. 2012). These find-
ings, however, have remained largely untested in real-world,
larger scale systems (Duffy 2009; Cardinale et al. 2012).
Understanding of the role of biodiversity in maintaining real-
world ecosystem services is an important goal given high rates
of biodiversity loss (Pimm et al. 2014) and the reliance of
much of the world’s population on ecosystem services (Mille-
nium Ecosystem Assessment 2005).
There are several reasons why the real-world relationship

between biodiversity and ecosystem services (BES) might dif-
fer from the findings of smaller scale experiments investigating
the biodiversity-ecosystem functioning (BEF) relationship.
First, experimental communities typically have low numerical
dominance (Dangles & Malmqvist 2004; Kirwan et al. 2007),
whereas real-world communities universally have strong domi-
nance (McGill et al. 2007). Abundance or its proxy, biomass,
can be a good predictor of function for a variety of ecosystem
functions and services (Grime 1998; Smith & Knapp 2003;
Dangles & Malmqvist 2004; V�azquez et al. 2005). Thus, domi-
nance could weaken the effect of richness, because there might
be many rare species each of which contributes little to func-

tion. Second, aggregate abundance (the total number of indi-
viduals per community) is generally controlled in BEF
experiments, but can vary greatly across real-world communi-
ties. Thus, abundance could be an important driver of the
BES relationship, even if it has only rarely been explored in
BEF experiments (Hulvey & Zavaleta 2011).
Third, in most BEF experiments communities of different

richness levels are assembled randomly, whereas real-world
communities disassemble non-randomly, with the most extinc-
tion-prone species being lost first. Therefore, if the most
extinction-prone species also contribute disproportionately to
function, function will decay rapidly with species loss. Con-
versely, if the more functional species are lost last, function
will decay slowly. Both cases can be compared to the null
expectation of linear loss of function with decreasing richness,
which occurs under the random loss scenario (Larsen et al.
2005). As yet we know little about the species loss orders
observed in real-world ecosystems (Larsen et al. 2005; Wardle
et al. 2011). Lastly, there is the issue of scalability in both
space and time. Delivery of real-world ES is determined
across hundreds of km2 and over multiple years, whereas the
typical unit in a BEF experiment is the size of a 20-L bucket,
and the typical duration < 1 organismal generation (Cardinale
et al. 2009). The increase in scale has been predicted to make
biodiversity both more (Duffy 2009; Cardinale et al. 2012)
and less (Jiang et al. 2009) important to ecosystem services.
It has been difficult to test these hypotheses about how the

BEF and BES relationships might differ because ecologists
have lacked analytical tools that can separate the effects of
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the different components of biodiversity (species richness,
composition, and abundance) on ecosystem services. Large-
scale, real-world data are often associational, and the compo-
nents of biodiversity are often strongly correlated. Few BES
studies have rigorously separated the causal role of the differ-
ent components of biodiversity, and perhaps for this reason,
results to date are highly variable (Cardinale et al. 2012).
Recently, an analytical innovation based on the Price equa-

tion from evolutionary biology has made more rigorous BES
analyses possible (Fox 2006; Fox & Harpole 2008; Fox &
Kerr 2012). The Price equation partitions biodiversity’s effect
on function into five additive components: species richness
losses that are random with respect to the pollination function
the species provides (RICH-L), species richness gains that are
random with respect to the pollination function the species
provides (RICH-G), species composition effects that capture
any non-randomness with respect to function of the species
that were lost (COMP-L), species composition effects that
capture any non-randomness with respect to function of the
species that were gained (COMP-G), and changes in abun-
dance of species that are always present (ABUN) (Fox 2006;
Fox & Harpole 2008; Fox & Kerr 2012). The RICH-L corre-
sponds conceptually to the effect of richness as measured in
BEF experiments that seek to remove composition effects,
through combinatorial designs and/or statistical methods. In
the real-world context, the RICH-L measures the reduction in
function that would occur with a given level of species loss, if
species were lost randomly with respect to their functional
contribution. The COMP-L corresponds conceptually to com-
positional and/or identity effects in BEF experiments. In the
real-world context it measures the change in function attribut-
able to the fact that species were not lost randomly with
respect to function. For example, a positive COMP-L means
that the lower functioning species were lost, thereby increasing
function over what it would be if species loss were random.
Because the five terms of the Price partition are additive, the
sum of RICH-L+COMP-L represents the total change in
function attributable to species loss, including both its ran-
dom and non-random components. The two terms represent-
ing species gain, RICH-G and COMP-G, have parallel
interpretations to those representing species loss. The ability
to include species gains, not just losses, is a strength of the
Price approach in a BES context because species composition
is rarely nested across sites in nature (although it often is
nested in experiments). Lastly, ABUN represents changes in
function attributable to abundance fluctuations independent
of changes in richness.
Here, we present the first Price equation analysis of the

real-world BES relationship, using four large-scale data sets
on crop pollination by wild bees. While our data collection
and analysis methods cannot fully capture the complexity of
real-world ecosystem services, they represent a significant step
forward in that they are based on field measurements of polli-
nator visitation rates and pollen deposition as done by free-
living wild bee communities in commercial crop fields. Specifi-
cally, we answer three questions: (1) What is the relative
importance of changes in species richness, species composi-
tion, and abundance in explaining variation in ecosystem ser-
vice delivery over space and time?, (2) Is species loss order

random with respect to function? and (3) Do skewed species-
abundance distributions act as a mechanism behind differ-
ences between the BEF and the BES relationships? We found
that abundance fluctuations of a few dominant species
drove changes in ecosystem services across space and time.
In contrast, species richness was less important, because a
non-random set of rare and functionally unimportant species
accounted for most species richness changes. Thus, the skewed
species-abundance distribution was the mechanism that decou-
pled species richness from ecosystem services.

METHODS

Study systems and species

We used parallel study designs and data collection methods to
measure crop pollination by wild bees in four study systems.
Our first system was watermelon (Citrullus lanatus) pollination
in the eastern USA, where we worked at 15 farms within a
90 9 60 km area of central New Jersey and east-central Penn-
sylvania over 3 years (2010–2012). Second, we studied cran-
berry (Vaccinium macrocarpon) pollination at 16 farms within a
40 9 24 km region in southern New Jersey, over 2 years
(2009–2010). Third, we studied highbush blueberry (Vaccinium
corymbosum) pollination at 16 farms within a 35 9 55 km
region in southern New Jersey over 3 years (2010–2012).
Fourth, we studied watermelon pollination in the western
USA, at 7 farms within a 38 9 48 km area of the Central Val-
ley region, California over 3 years (2010–2012). All of our focal
study plants require animal-mediated (primarily bee) pollina-
tion for the production of marketable fruits (Klein et al. 2007).
Our focal pollinators were the wild and predominantly native
bee species that provide crop pollination as an ES. We did not
include the European honey bee (Apis mell-ifera) in our analy-
sis because it is a domesticated species in our study systems,
with commercial hives stocked in crop fields by farmers.

Data collection

At each farm, we established a transect within the crop row
where the data were collected. In order to identify the pollina-
tor species providing ecosystem services at each farm, and the
relative abundance of each species, we used temporally strati-
fied sampling with insect nets to collect bees visiting crop
flowers throughout the transect during the peak bloom period
of the crop. Total data collection effort was 135 days for east-
ern watermelon, 64 days for cranberry, 144 days for blueberry
and 63 days for western watermelon. In order to measure the
pollination provided by each type of bee, we performed exper-
iments with virgin flowers in which we measured the number
of pollen grains deposited in a single bee visit to a flower. In
these experiments, because it is not possible to identify most
native bees to the species level in the field, we grouped mor-
phologically similar species into species groups (Table S1).
Further detail on the study systems, sites and data collection
methods are available for all four systems in Text S1, and in
published sources specifically for the eastern watermelon
(Winfree et al. 2007; Winfree & Kremen 2009; Rader et al.
2013), cranberry (Cariveau et al. 2013), blueberry (Benjamin
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et al. 2014), and western watermelon (Kremen et al. 2002;
Garibaldi et al. 2013) systems.

Estimating pollination services

To estimate the pollination services provided by each bee spe-
cies at each site in each year, we multiplied the number of
individuals of that species collected on flowers at that site and
year, by the mean number of pollen grains deposited per
flower visit, as calculated for the species group to which the
bee species belongs. The pollination services delivered by the
entire bee community in a given site-year are then the sum of
pollen grains deposited over all bee species present in that
site-year. These methods have been developed and tested else-
where (Kremen et al. 2002; Winfree et al. 2007; Cariveau
et al. 2013; Garibaldi et al. 2013; Rader et al. 2013) and are
further detailed in Text S1, along with sensitivity analysis on
our use of the mean, as compared with alternative metrics
from the distribution of single-visit pollen deposition values.

Analytical methods – the price equation

The Price equation is based on the change in ecosystem func-
tion (or services) between a baseline site, which has more pol-
lination services, and a comparison site, which has less. The
total difference in pollination between the two sites is parti-
tioned into the five terms of the Price equation: changes in
function due to random species richness losses (RICH-L); ran-
dom species richness gains (RICH-G); non-random species
losses, i.e. a species composition effect (COMP-L); non-ran-
dom species gains (COMP-G); and fluctuations in abundance
for species present at both sites (ABUN) (Fox & Kerr 2012).
Figure 1 shows a graphical illustration of simple hypothetical
cases in which the effects occur more or less separately; in
nature all five effects will generally co-occur. For instance,
loss or gain of species from the baseline site changes both spe-
cies richness and species composition, so that functional
effects of species richness and composition necessarily accom-
pany one another. The power of the Price equation is that it
separates and quantifies all five effects into additive compo-
nents even when they co-occur (Fox & Kerr 2012). Box 1
reviews the uses of the Price equation in BEF/BES studies as
compared with evolutionary biology, and Appendix S1 pro-
vides more detailed background on the Price equation.
We conduct parallel analyses over space and time, using the

Price equation to evaluate which aspects of community struc-
ture drive changes in function across sites within years, and
across years within sites. Thus, when we make comparisons
across sites within a year, we compare all other sites to the
site that had the highest function in that year, and when we
make comparisons across years at the same site, we compare
all other years to the year that had the highest function at
that site. While the use of the highest-functioning site as the
baseline constrains the sum of the terms to be negative, it
does not constrain the relative importance of the five terms,
which is our primary question, and it makes our results more
interpretable with respect to which components of biodiversity
are most important in driving changes in function over space
and time (see Text S1).

We calculated the Price equation partition using the out-
come variable pollination function, which we measured in
units of pollen grains deposited on stigmas. However, in our
presentation of the results below we normalize the output for
each site-year by the largest value in that sample (i.e. the larg-
est of the terms in a given comparison) to rescale to a �1 to 1
range. This normalization makes the relative strength of each
of the terms comparable among pairs of sites or years that
had different total changes in pollination function, and also
comparable across the different crop plants, which produce
different amounts of pollen and have different thresholds for
full pollination, thus making the unit of a ‘pollen grain’
incommensurate across plants.

Analytical methods – species-abundance distributions

We explored the role of the underlying species-abundance
distribution in determining the results of the Price equation
analysis in several ways. First, to obtain a visual assessment
of the degree of functional dominance in our study systems,
we plotted the species-function distributions for each data
set. These distributions are analogous to species-abundance
distributions, but use the number of pollen grains deposited
in place of the number of individuals (Balvanera et al. 2005).
Second, to assess the role of abundance in determining func-
tion, we calculated the Pearson’s correlation between abun-
dance and function for each study system, using species as
the replicate. Third, we assessed the relative contributions of
functionally dominant and functionally unimportant species
to changes in species richness and abundance between
sites. The functionally dominant species were defined as the

Figure 1 A cartoon illustrating the five components of the Price equation

as applied to the biodiversity-ecosystem function relationship. Different

colours represent different species, and size represents the amount of

ecosystem function each species provides. The species richness terms

represent changes in richness that are random with respect to function,

such that the lost or gained species provide the mean level of function.

The species composition terms represent changes that are non-random

with respect to function. The abundance term represents abundance

fluctuations with no changes in richness or composition between sites.
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minimum set of wild bee species that collectively provide
≥ 50% of the total wild bee pollination in that study system.
Although we did not include the managed honey bee in our
analyses (see Methods and Text S1), this is likely a bias
against our hypothesis and findings about the importance of
dominant species, because honey bees would have been an
additional strongly dominant species that was present at vir-
tually all sites and years, thus its abundance fluctuations
likely have strong effects on pollination. The functionally
unimportant species were defined as those that contributed
≤ 2% of the total pollination in the system. Alternative defi-
nitions obtained qualitatively similar results (data not
shown).
All analyses were done in R version 2.15.3 (R_Core_Team

2013). Source code used to calculate the Price equation parti-
tion is available as Appendix S2.

RESULTS

In the eastern watermelon system we collected 3483 individual
bees of 56 species and 287 single-visit pollen deposition records;
in the cranberry system 2992 bees of 54 species and 193 pollen
deposition records; in the blueberry system 1087 bees of 43 spe-
cies and 305 pollen deposition records; and in the western
watermelon system 681 bees of 23 species (only three of which
were also found in the eastern watermelon system) and 406
pollen deposition records (Fig. S1). Data available from the
Dryad Digital Repository: http://doi.org/10.5061/dryad.6qd88

The five price equation terms

Results for the Price equation partition were qualitatively simi-
lar across space and time, with the rank order of the five terms

Box 1 The use of the Price equation in biodiversity-ecosystem functioning research

The Price equation originally was developed to partition the effects of different causes of directional evolutionary change in
mean phenotype in an evolving population (Price 1970, 1972). It is not itself a model of evolution, in that it makes no substan-
tive assumptions about the evolutionary process (e.g. about population sizes, strength of selection, or other evolutionary param-
eters). Rather, it is a descriptive tool, showing how to calculate the effects of any and all underlying processes that might
contribute to directional evolutionary change. It is now an established analytical tool in evolutionary biology (Frank 1997,
2012; Gardner 2008). Fox (2006), Kerr & Godfrey-Smith (2009), and Fox & Kerr (2012) extended the Price equation to cover a
wider range of situations, and showed how the same mathematics used to describe directional evolutionary change also could
be used to describe directional change in ecosystem function or services. In this Box we briefly discuss the interpretation of the
Price equation in the BEF/BES as compared with the evolutionary context. We draw heavily on Fox & Kerr (2012) as well as
Kerr & Godfrey-Smith (2009), and refer readers to those papers for further discussion, as well as to Appendix 1 for a mathe-
matical derivation of the Price equation as used in our study.
As used in BEF/BES analysis, the Price equation compares the communities at two sites (or times; for simplicity we discuss

sites) and the function they provide. The Price equation partitions the difference in function between the two sites into additive
components attributable to differences in various components of community structure. For convenience, we refer to one site as
the ‘baseline’ site and the second as the ‘comparison’ site, but the directionality is not essential to the analysis. The baseline site
is analogous to the ancestral population in evolution, and the comparison site is analogous to the descendent population. The
five terms of Price partition can be interpreted as follows. The RICH-L term is the amount by which total function would
decline if the number of species lost from the baseline site (i.e. the number of species present at the baseline site but not the
comparison site) had been lost at random with respect to the function they provide. The RICH-G term has interpretations par-
allel but opposite to the RICH-L. It represents the amount by which function would increase between the baseline and compar-
ison sites if the species gained at the comparison site had been gained at random with respect to their function. The two RICH
terms have no evolutionary analogue (Fox 2006; Fox & Kerr 2012).
The species composition (COMP) terms capture non-randomness with respect to function in the identity of the species lost and

gained. For example, if the species lost from the baseline site were those that contributed the most to ecosystem function, then the
COMP-L term would reflect this and increase the loss of function beyond the random case (RICH-L). Analogously, in evolutionary
biology, if large-bodied individuals die, the mean body size of the descendant population will be reduced. The COMP-G term has
the same interpretation but applies to species gain at the comparison site. The COMP-G term is analogous to non-random immi-
gration in evolution. If the migrants into the descendant population are larger than the residents, immigration will increase mean
body size in the descendant population.
The final term, ABUN, captures the between-site difference in function due to between-site variation in the abundances of

species that are present at both sites. The ABUN term is analogous to biased transmission in evolution. Biased transmission in
evolution refers to any factor that causes the phenotypes of descendant organisms to differ on average from the phenotypes of
their ancestors. For instance, if for some reason (say, an environmental change) the offspring are smaller than their parents
were, this would reduce the mean body size of the offspring population compared to the parental population. Analogously, any
factor that causes species present at both sites to function differently at the two sites will contribute to between-site variation in
function. In our dataset, abundance is the only such factor, because we assume that species do not exhibit between-site variation
in their per-capita rates of pollen deposition.
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being the same in 88% of comparisons between the medians
obtained for the across-space vs. across-time analyses within a
given system (Fig. 2). Results were also qualitatively similar
across three of our four study systems (Fig. 2). We report the
results of the three similar systems first, before presenting the
fourth (blueberry) along with possible reasons for its differ-
ence. In the eastern watermelon, cranberry, and western water-
melon systems the effect of random species loss (RICH-L) was
large and negative, indicating that if species had been lost ran-
domly with respect to their function, species loss would have
strongly reduced pollination between sites and years. The
effect of random species gain (RICH-G) was smaller and posi-
tive. However, both species composition effects (COMP-L and
COMP-G) were opposite in sign to their corresponding rich-
ness effects, indicating that the non-random loss of low-func-
tioning species partially cancelled the random effects. In these
three systems, the abundance effect (ABUN) is strongly nega-
tive and similar in magnitude to the RICH-L, indicating that
abundance losses for species present at both sites reduce polli-
nation as strongly as would random loss of species richness
(Fig. 2). The fourth system, blueberry, differs from the above
pattern in two ways. First, ABUN is at most 40% as large as
RICH-L, indicating that abundance losses did not reduce pol-
lination as much as would random richness losses. Second, the
SCE terms are smaller, indicating that species losses were
slightly biased towards low-functioning species but not as
biased as in the other three systems (Fig. 2).

Additive combinations of the Price equation terms

Three combinations of species-related effects are compared
with the abundance effect (ABUN) in Fig. 3. Again consider-
ing the eastern watermelon, cranberry, and western water-
melon systems jointly, the total effect species loss, including
both its random and non-random components (RICH-
L+COMP-L), is always negative but is on average only 0.27
of the RICH-L alone, and only 0.31 of the abundance effect.
The net effect of species gain, including both its random and
non-random components (RICH-G+COMP-G), is positive
but small. Thus, overall, the sum of all species-related effects,
including both random and non-random losses, and both loss
and gain of species (RICH-L+RICH-G+COMP-L+COMP-G),
is on average only 0.15 the effect of abundance (ABUN). The
blueberry system shows a different pattern, with the RICH-
L+COMP-L effect being larger than the ABUN effect, such
that the sum of all species-related effects is 1.7 times the abun-
dance effect (Fig. 3).

Dominance as a mechanism for the Price results

Species-function histograms for the four systems showed that
in all cases, the distribution of per-species functional contribu-
tion to total pollination services was highly skewed, such that
a small number of species contributed a large proportion of
the total function, whereas the majority of species contributed
little (Fig. 4). The species-function distribution is driven by
the species-abundance distribution: values of Pearson’s r
between the total number of individuals collected for a bee
species, and the total number of pollen grains deposited by

that species, were high in all four systems (eastern watermelon
r = 0.95, n = 56 species; cranberry r = 0.92, n = 54 species;
blueberry r = 0.95, n = 43 species; and western watermelon
r = 0.93, n = 23 species). Although our methodology for esti-
mating function as the product of individuals and function
per individual makes such a correlation likely, it does not con-
strain it to be the case. The same expectation pertains to the
per-individual function measure, which was not strongly cor-
related with total function in any of the four systems (eastern
watermelon r = 0.15, cranberry r = 0.31; blueberry r = 0.42;
and western watermelon r = �0.08). The likely mechanism for
the greater importance of visitation rate as compared with
per-visit pollen deposition is the larger variance of the former,
as found by V�azquez et al. (2005).
Lastly, we explored a possible mechanism through which

functionally dominant species could cause both the weak rich-
ness effects observed in three study systems, and the stronger
richness effects found in the blueberry system. In the first
three study systems, only two dominant species collectively
accounted for ≥ 50% of the total pollination function (domi-
nant species are identified in Table S1). Because these func-
tionally dominant species were also numerically dominant,
they were present in most sites and years, and thus contrib-
uted little to changes in richness or composition between sites
(eastern watermelon, functionally dominant species accounted
for 4% of richness changes; cranberry 0%; western water-
melon 1%). In the blueberry system, there were 4 dominant
species, and they were absent from more sites and years, over-
all accounting for 18% of richness changes. In contrast, func-
tionally unimportant species, defined as those contributing
< 2% of the total pollination in the system, accounted for
most of the changes in richness between sites in all four sys-
tems (eastern watermelon, 82%; cranberry 88%; blueberry
56%; western watermelon 51%). Thus, richness changes were
driven by rare, not dominant species in all four systems,
although dominant species played a stronger role in richness
changes in the blueberry system than in the other systems.
In all four systems, abundance variation was driven by the

dominant pollinator species, which varied greatly in abun-
dance (up to two orders of magnitude) across sites and years
where they were always present. In contrast, functionally
unimportant species, because they were rare, contributed little
to abundance fluctuations.

DISCUSSION

We conducted one of the first large-scale studies to separate
the effects of species richness, composition, and abundance on
real-world ecosystem services. We found some similarities with
the findings of smaller scale biodiversity-ecosystem function-
ing experiments, but also some important differences. Consis-
tent with BEF experiments, we found that random loss of
species has (or would have) large functional effects, and that
the identity of the species that are lost is also important.
Unlike most BEF experiments, our data sets arose from real-
world species-abundance distributions and species loss orders,
and these factors largely ameliorated the effects of random
species loss. Specifically, species loss was highly non-random
with respect to function, with the less functionally important
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Figure 2 Relative importance of the five terms in explaining differences in pollination function across sites within a year (spatial analysis; left column) and

across years at a given site (temporal analysis; right column). Y axis is originally in units of pollen grains but has been normalized within a site-year such

that it represents the relative strength of the five effects. Boxes encompass the 25th–75% quartiles and whiskers extend to the last data point within another

1.5 times the interquartile range.
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Figure 3 Parallel to Fig. 2, but now comparing the original abundance effect (ABUN) with three combinations of terms representing effects of the

following: total changes in function due to species loss (RICH-L+COMP-L); total changes in function due to species gain (RICH-G+COMP-G); and total

changes in richness and composition (RICH-L+COMP-L+RICH-G+COMP-G).
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species accounting for most richness losses (Fig. 2). Thus, the
total observed effect of species loss on function, including
both its random and non-random components, was relatively
weak (Fig. 3). Our second major finding is that, in three of
our four systems, abundance fluctuations had larger effects on
ES than did all species-related effects combined (Fig. 3). In
BEF experiments, abundance is generally standardized both
across and within the experimental communities, such that all
communities have the same aggregate abundance and high
evenness (Dangles & Malmqvist 2004; Kirwan et al. 2007;
Cardinale et al. 2012). This makes it more likely that species-
related effects will be detected, both because variation due to
abundance is controlled, and because evenness maximizes
complementarity among species, which is a main mechanism
for increasing function with increasing richness (Jiang et al.
2009; Crowder et al. 2010). In contrast, in real-world systems
abundance variation is commonplace.
The mechanism behind our findings is the skewed species-

function distribution, which decoupled the relationship
between species richness and function. A few common and
functionally dominant species drive the changes in function,
whereas many rare but functionally unimportant species drive
richness. Given that real-world ecological communities univer-
sally have strongly skewed species-abundance distributions,
our result could be a general one (McGill et al. 2007). When
species contribute to function in proportion to their abun-
dance, as proposed by the mass ratio hypothesis (Grime
1998), and supported empirically for pollination systems
(V�azquez et al. 2005), then in general a small number of dom-
inant species would make disproportionate contributions to
function (as we found here). We would expect rare species to
be lost and gained most frequently for both biological and
statistical (sampling) reasons (Smith & Knapp 2003; Suding
et al. 2005; Winfree et al. 2014). In contrast, the dominant

species, which have strong functional effects, rarely contribute
to changes in species richness or composition because they are
present at most sites in most years. However, the abundance
fluctuations of common species contribute strongly to abun-
dance effects. In our study, one of our four systems had more
functionally dominant species, and these turned over more
often between sites and years. This system also showed stron-
ger richness effects and weaker abundance effects (Fig. 3,
Fig. 4), suggesting that the exact shape of the species-function
distribution could be a strong determinant of the BES rela-
tionship. Other real-world studies conducted in grassland and
stream communities, while being done at smaller spatial scales
than ours, have likewise found that dominant species are
more important to function than are the rare species that
compose most of the species richness (Smith & Knapp 2003;
Dangles & Malmqvist 2004).
Most studies investigating the functional effects of species

loss order on real-world ecosystem services have focused on
traits of species that predict both response to disturbance, or
extinction sensitivity (‘response traits’), and those that predict
a large contribution to function (‘effect traits’) (Larsen et al.
2005; Selmants et al. 2012). When the same natural history
trait serves as both a response and an effect trait – for exam-
ple large body size – then the most functionally important
species are lost first, leading to a rapid decay in function
(Larsen et al. 2005). Rarity has less often been considered as
a trait in this context, but might in fact have wider generality
as a response trait than do morphological and other natural
history traits, given the extinction-proneness of rare species
(Davies et al. 2004). The generality of rarity as an effect trait
will depend on the functional importance of rare species,
which is a controversial topic about which there is conflicting
evidence (Zavaleta & Hulvey 2004; Lyons et al. 2005; V�azquez
et al. 2005; Gaston 2010; Mouillot et al. 2013; Wielgoss et al.
2014).
Here, we use a new analytical tool, Price equation analysis,

for the first time with landscape-scale BES data. The Price
equation is ideally suited for such data because it partitions
the functional effects of species richness, composition, and
abundance into additive components. It also separates the ran-
dom and non-random components of species loss, which is
likewise difficult to do without combinatorial experiments. In
our analyses, the Price equation clearly showed that species
richness changes involved a non-random subset of low-func-
tioning species, because the terms representing the non-random
component of species richness changes (COMP-L and COMP-
G) are always opposite in sign to the random terms (RICH-L
and RICH-G; Fig. 2). Furthermore, random and non-random
components of species loss tend to cancel each other: larger
negative values of RICH-L are associated with larger positive
values of COMP-L (mean Spearman’s coefficient = �0.50).
Thus, regardless of how many species were lost, the net effect
of species loss on function tends towards zero.
However, our approach also has limitations as a method

for assessing the real-world biodiversity-ecosystem services
relationship. One issue is that the Price equation evaluates the
drivers of changes in ecosystem service delivery over space or
time, but does not provide information about how many spe-
cies are necessary in order to achieve some target level of ser-
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vice delivery (and indeed we did not measure total pollination,
relative to some target, in our study). Thus, although we
know that pollinator species richness declines by a mean of
30% as one moves from sites with the most pollination ser-
vices to sites with less, our analysis methods do not determine
what level of pollinator biodiversity is necessary to achieve
sufficient pollination. A related point is that although we
know the magnitude of species loss, we do not know the
causes, which may or may not be the same as the causes of
larger scale (regional and global) pollinator species declines. A
second limitation is that our data collection methods, while
being based on real-world crop flower visitation rates, do not
allow us to capture the full real-world complexity of ecosys-
tem service delivery. For example, because our measures of
pollination function are based on single-visit experiments with
virgin flowers, we do not capture species interactions such as
spatial or temporal complementarity, which have been found
to increase crop production in some systems (Klein et al.
2009). Likewise, because we measured pollen deposition, not
crop yield, our study excludes any potential nonlinearity or
other factors that modify this relationship. However, a syn-
thetic analysis of hundreds of crop fields shows that pollinator
visitation rate, pollen deposition, and crop fruit set are posi-
tively and significantly correlated, suggesting that pollen depo-
sition should be a good proxy for crop yield, in general
(Garibaldi et al. 2013). Lastly, because our time series were
only 2–3 years, our results likely underestimated the insurance
effects of species richness, wherein a pollinator species that is
not important to ecosystem services now might be important
in the future (but see Kremen et al. 2002, where significant
insurance effects were detected in a 2-year time series).
In conclusion, we use a promising new analytical method to

show that the effects of species richness and composition on a
valuable ecosystem service are generally weaker than the
effects of abundance variation in a few dominant species. Our
study contributes to the growing evidence for the importance
of common species in ecosystem functioning, and to the
importance of including realistic species-abundance distribu-
tions in explorations of ecosystem function. Our findings bear
on the current debates about the extent to which the conser-
vation of ecosystem services, which is rapidly becoming a jus-
tification for biodiversity conservation in policy circles, in fact
requires the conservation of rare and threatened species
(Adams 2014), and whether declines in abundance have large
functional consequences that are currently under-recognized
(Dirzo et al. 2014).
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